

Al Adoption in Cyber Defense

SINCE 1960

10 June 2023

Stay in touch! **f in**

Agenda

- CBE Service Portfolio
- Global Al Adoption
- Defensive Cybersecurity and Key Issues
- Al Adoption in Cyber Defense Use Cases
 - UEBA (User and Entity Behavior Analytics)
 - NLP (Natural Language Processing)
- Key Takeaways

กว่า 60 ปี ที่ผ่านมา กลุ่มเบญจจินดา (Benchachinda Group "BCG") มุ่งมั่นที่จะพัฒนาโครงสร้างพื้นฐานด้านโทรคมนาคม และดิจิทัลเทคโนโลยี ของประเทศไทยให้เป็นระดับแนวหน้าของภูมิภาคอาเซียน เพื่อยกระดับ คุณภาพ และเพิ่มขีดความสามารถในการแข่งขันขององค์กรไทย

ปัจจุบัน บีซีจี ดำเนินธุรกิจแบ่งออกเป็น 4 กลุ่มธุรกิจ ได้แก่

- (1) กลุ่มธุรกิจ Digital Infrastructure and Solution Business
- (2) กลุ่มธุรกิจ Distribution and Fulfillment Business
- (3) กลุ่มธุรกิจ Content Business
- (4) กลุ่มธุรกิจ Investment Business

UTEL

UTE

DISTRIBUTION AND FULFILLMENT BUSINESS

CONTENT BUSINESS

INVESTMENT BUSINESS

บริษัท ไซเบอร์ อีลีท จำกัด (CYBER ELITE)

มุ่งมั่นในการเป็นผู้นำบริการด้านการรักษาความปลอดภัยไซเบอร์ ้ ที่ครบครันในระดับภูมิภาคอาเซียน มีความน่าเชื่อถือได้มาตรฐาน ระดับโลก มีผู้เชี่ยวชาญร่วมเฝ้าระวัง และรับมือภัยไซเบอร์ตลอด 24 ชั่วโมง CYBER ELITE ให้บริการครอบคลุม System Integration, Security Advisory, Managed Security Services, Cybersecurity Platform IIa: Training & Awareness

"We simplify the way you build trust and resilience in cyberspace"

Contact

🛍 บริษัท ไซเบอร์ อีลีท จำกัด 499 Benchachinda Bldg., Kamphaeng Phet 6 Rd., Ladyao, Chatuchak, Bangkok 10900.

- www.cyberelite.co
- **6** Cyber Elite
- **©** 02 016 5555

0 1 0 1 4 5 0 T 3 8 2 mkt@cyberelite.co 0101 1

01

OUR ELITE TEAM

Our team has over 20 years of experience in cybersecurity as consultants, implementers, advisors, instructors, researchers, and service providers in various industries.

Financial	Telecom	Insurance
Retail	Healthcare	Government
Energy	Defense	National CERT
Leasing	Manufacuring	Entertainment

OUR CERTIFICATIONS

CISSP | CSSLP | CISA | CISM | CDPSE | CDPO | CCISO | GIAC GWAPT |

ECSA | CEH | CHFI | ECES | ENSA | CSCU | CEI | CSIE | CSAE | CASP+ |

CySA+ | Security+ | Pentest+ | Network+ | CTT+ | CNVP | CSAP | CNSP |

IRCA ISO27001 PA | PECB ISO27001 SLI | PECB ISO27001 LI | PECB

ISO22301 PI | PECB ISO31000 RM | ITILv3 Foundation

Our Security Operations Center (SOC) is 27001 and 27701 certified

"The Most Trusted and Supportive Cybersecurity Company"

We offer full range of end-to-end cybersecurity products and services, designed and tailer-made to fit each organization cybersecurity context and exposure

No "one size fits all" in cybersecurity

SECURITY **SYSTEM** INTEGRATION

> **SECURITY ADVISORY**

CYBERSECURITY PLATFORMS

MANAGED SECURITY SERVICES

TRAINING & AWARENESS

Products, Solutions, and Services Highlights

Pre-defined custom solutions and services for each sector

Security Solutions

- · Cloud Security
- PDPA
- Cyber Incident Response
- E-Insurance
- CRAF
- · Cyber Hygiene
- Cyber Act
- Zero Trust
- · Cyber Threat Intelligence
- IT Third Party Security
- · Network Security
- OT Security

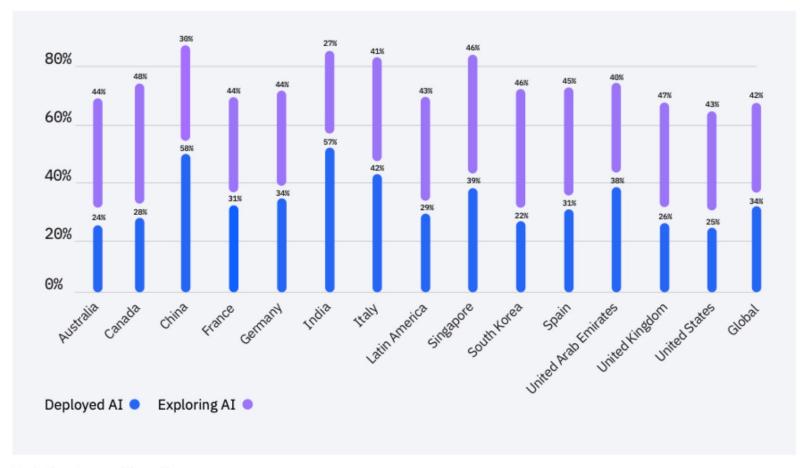
Security Advisory

- Cyber Maturity Assessment
- · Security Readiness Advisory
- Regulatory Compliance Advisory
- Security Assessment
- Security Infrastructure Review
- · Security Hardening
- Cloud Security
- ISO27001 Consulting
- Cyber Drill and IRP Advisory

Managed Security Services

- Managed Cybersecurity Program (vCISO)
- · Managed Network Security
- Managed CSOC
- Managed Vulnerability
- Managed Cyber Threat Intelligence
- Managed Cloud Gateway Security
- Managed Data Loss Prevention (DLP)
- Managed Data Tokenization

Global Al Adoption Index 2022



AI adoption rates around the world

https://www.ibm.com/downloads/cas/GVAGA3JP

Top 3 Benefits

- 1. Automation, Cost saving (54%)
- 2. Improvement in IT performance (53%)
- 3. Better experiences for customers (48%)

Top 5 Barriers to AI adoption

- 1. Al skills, expertise or knowledge (34%)
- 2. Price is too high (29%)
- 3. Lack of tools or platforms to develop models (25%)
- 4. Projects are too complex or difficult to integrate and scale (24%)
- Too much data complexity (24%)

- Proactively attempting to prevent cyber attacks
- Reactively attempting to identify, block, and mitigate ongoing attacks

Key Issues	Use Cases	ML Algorithms	Proactive/ Reactive
Threat detection (False Positive, False Negative, MTTD)	Ş	?	?
Threat response time (MTTR)			
New threat identification (Zero-day Attack)	Ş	?	?
Staffing capacity and expertise	?	ę	2
Large volume of cyber alerts	ŗ	i.	·
How to manage?	?	?	?

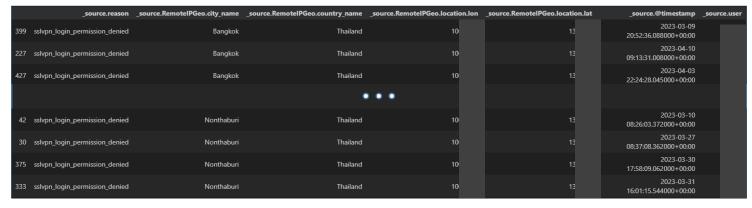
Use Cases: UEBA

Rule based alert (Example) (just for study)

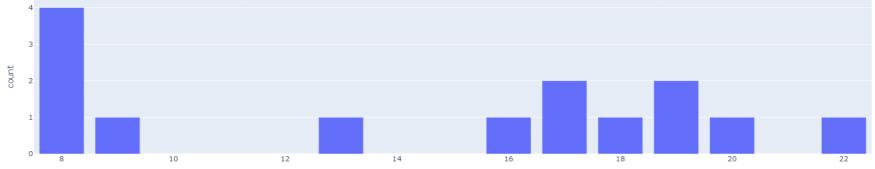
Alert condition		п
1		-
1	host="a-host" sshd	
the state of		
Time (1) see		
[=		

CYBER ELITE Use Cases : UEBA

Anomaly Detection: Isolation forest Example on actual login data



	hour	count
0	8	4
1	9	1
2	13	1
3	16	1
4	17	2
5	18	1
6	19	2
7	20	1
8	22	1

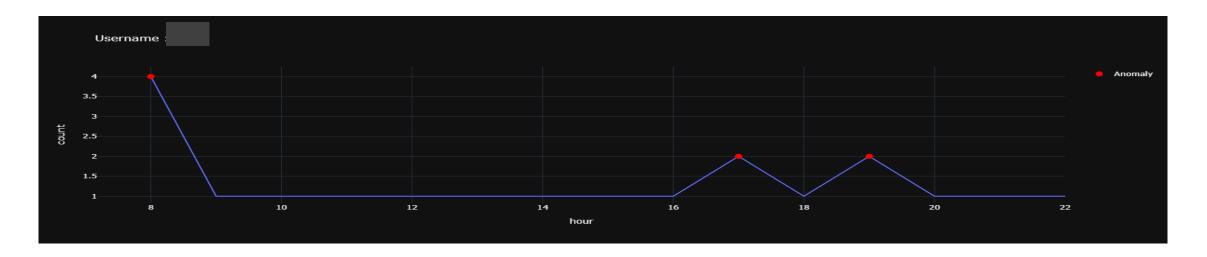


hour

CYBER ELITE Use Cases: UEBA

Anomaly Detection: Isolation forest

Result



Scatter Plot of Cluster with Random Noise

Timestamp [Indochina Time /+7 UTC] (hr)

Use Cases: UEBA

Histogram Plot

Anomaly Detection: Isolation forest (2 dimensions)

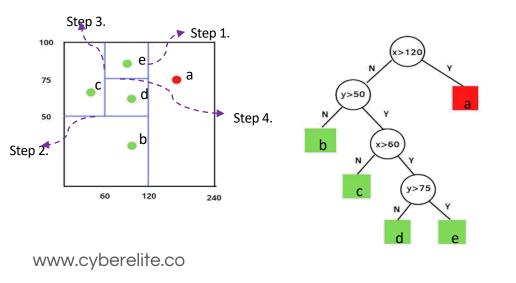
Let's try to use Isolation forest use to on Login log to detect anomalies.

Timestamp Distance diff 30 15.756032 18.223893 12.181968 7.542349 25 17.142040 0.000713 2.898547 0.387280 5.534569 5.758747 Histogram Plot 20.305775 1.180890 0.496461 19.743112 1.334658 20.272761 19.216450 1.754423 19.227055 0.033989 Distance from last login location (km)

• Anomaly Detection: Isolation forest

The premise behind Isolation forest is that <u>Anomalies easier to separate from the rest</u> of the sample.

In other words, when construct a decision tree using randomly selects a feature and a split value, on average an <u>anomalies will be isolated much sooner than normal data</u> points.

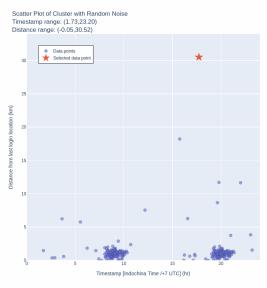




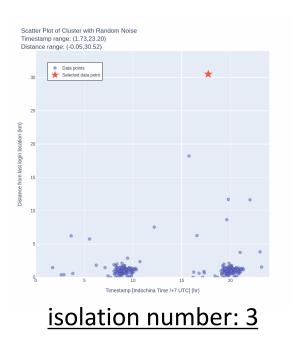
Anomaly Detection: Isolation forest

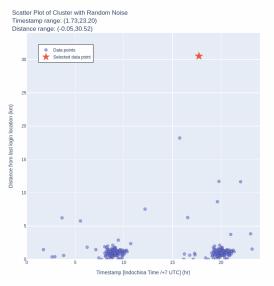
Let's try to use Isolation forest use to on Login log to detect anomalies.

Do those steps multiple time then get average isolation number



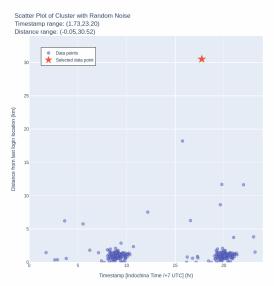
isolation number: 3





isolation number: 4

average isolation number =
$$\frac{3+3+4+5}{4} = 3.75$$

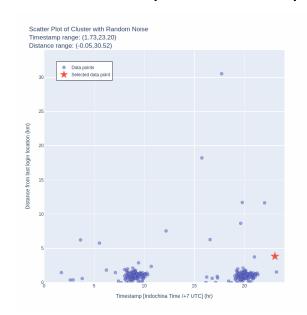


isolation number: 5

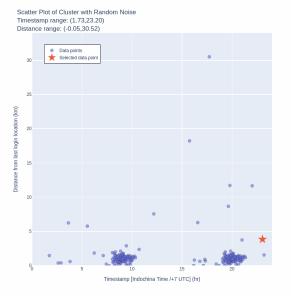
Anomaly Detection: Isolation forest

Let's try to use Isolation forest use to on Login log to detect anomalies.

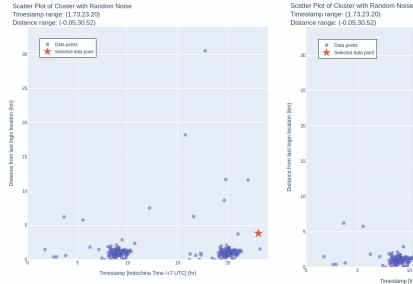
Do those step on all data points



isolation number: 11

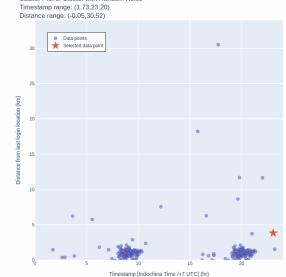


isolation number: 8



isolation number: 4

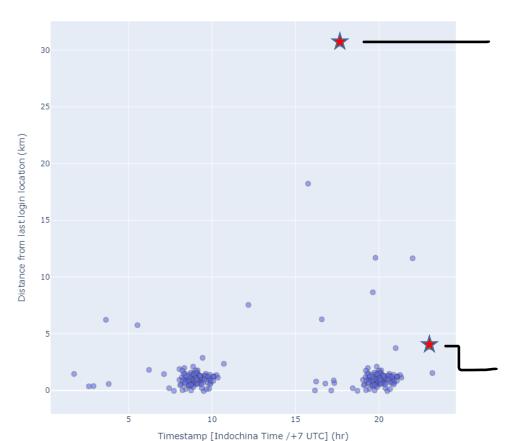
average isolation number =
$$\frac{11+8+4+14}{4}$$
 = 9.25



isolation number: 14

• Anomaly Detection: Isolation forest

Scatter Plot of Cluster with Random Noise



<u>average isolation number</u> = 3.75

** Anomalies data will have <u>average isolation number</u> lower than regular data

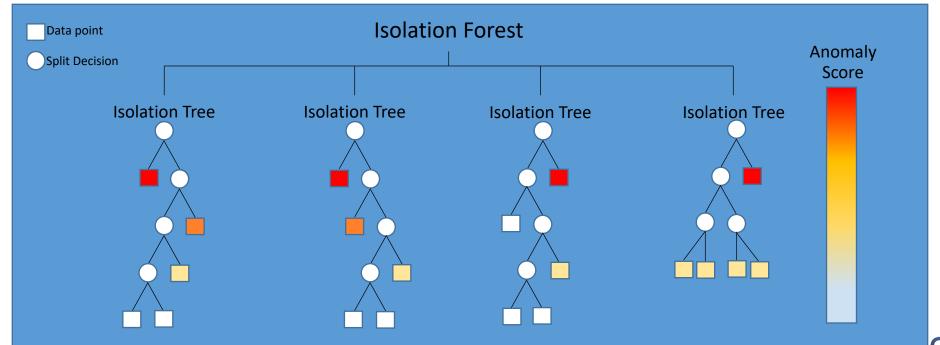
<u>average isolation number</u> = 9.25

Use Cases: UEBA

• Anomaly Detection: Isolation forest

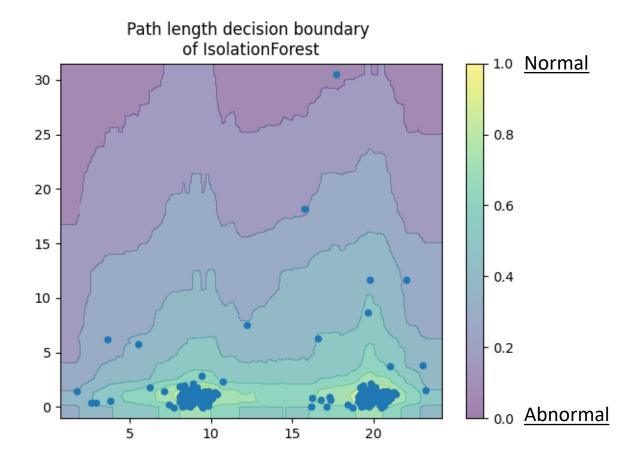
What is Isolation forest?

Isolation Forest is a machine learning algorithm that efficiently identifies anomalies or outliers in datasets by leveraging random partitioning and isolation techniques.



Anomaly Detection: Isolation forest

Score interpretation



Al Adoption in Cyber Defense Use Cases <u>UEBA with Neural Network</u>

Use Cases: UEBA with Neural Network

Rule based (Example) (just for study)

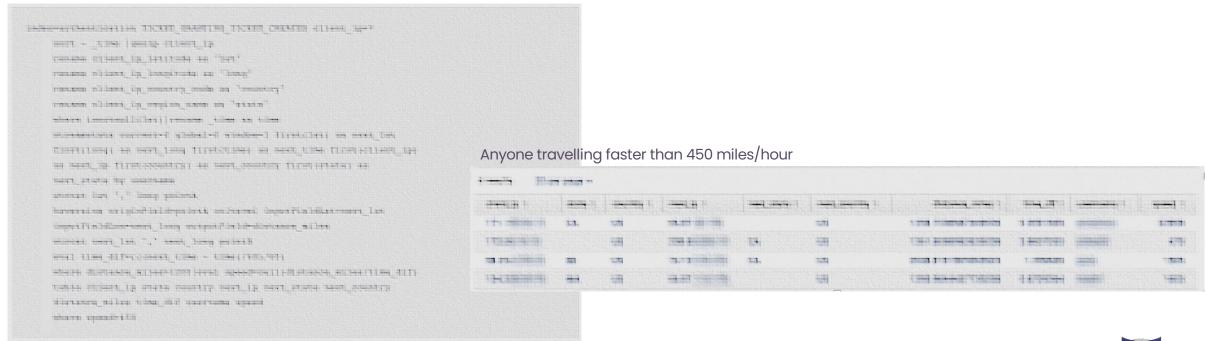
```
The instruction of the content of th
```

Botevi Berch	Tre-rates
	Tracests only Tetrational analysis eventuage.
r—ton-th	Philips substantial total incorporar topic reacts.
erichida angi jima" dili anji dilanji jima") dili dilan	Calculate the average and the obsoluted deviation of tights being and owner those results any and deline.
idengeruge/jed-rapper, annegg) Leat, press gerunge/ded-apper, anneggi)	Calculate a learn located for your baseline by subtracting the standard deviation times. I from the average, Calculate on upon bound to your bounder by adding the standard deviation times. I be the average.
noni hiDullan oliji tomi n hamellourd CPI hom n upperflourd 1, Ch	Create an industrial tests Particulares a consult of 1.8 this financial along in a substitute this collection forms on a particular financial 1.8 from and 1.8 februs.

Use Cases: UEBA with Neural Network

Rule based (Example) (just for study)

- Detecting Credential Theft Using Geographic Information



Use Cases: UEBA with Neural Network

Data Source (Raw Log)

Use Cases: UEBA

Dataset Preparation

user	login_date	login_time	country_name	city_name		
tong	1/5/2023	08:59:23	Thailand	Bangkok		
tong	1/5/2023	14:19:10	Thailand	Bangkok		
tong	1/5/2023	20:04:46	USA	Chicago		
tong	2/5/2023	09:29:35	Thailand	Bangkok		
tong	2/5/2023	15:31:53	Thailand	Bangkok		
tong	2/5/2023	20:39:33	USA	Chicago		
tong	3/5/2023	10:22:57	Thailand	Bangkok		
tong	3/5/2023	13:56:04	Thailand	Bangkok		
tong	3/5/2023	20:13:11	USA	Chicago		
tong	4/5/2023	08:23:27	08:23:27 Thailand			
tong	4/5/2023	14:23:50	14:23:50 Thailand			
tong	4/5/2023	19:43:13	19:43:13 USA			
tong	5/5/2023	10:02:00	10:02:00 Thailand			
tong	5/5/2023	14:33:07	Thailand	Bangkok		
tong	5/5/2023	19:14:47	USA	Chicago		
tong	6/5/2023	10:33:43	Thailand	Bangkok		
tong	6/5/2023	15:57:44	Thailand	Bangkok		
tong	6/5/2023	21:34:16	USA	Chicago		
tong	7/5/2023	09:40:30	Thailand	Bangkok		
tong	7/5/2023	13:46:40	Thailand	Bangkok		
tong	7/5/2023	21:06:50	USA	Chicago		
tong	8/5/2023	10:16:01	Thailand	Bangkok		
tong	8/5/2023	13:46:46	Thailand	Bangkok		
tong	8/5/2023	20:06:08	USA	Chicago		

• • •

tong	27/5/2023	13:05:50	Thailand	Bangkok
tong	27/5/2023	21:39:03	USA	Chicago
tong	28/5/2023	09:57:07	Thailand	Bangkok
tong	28/5/2023	15:26:58	Thailand	Bangkok
tong	28/5/2023	20:33:49	USA	Chicago
tong	29/5/2023	09:39:22	Thailand	Bangkok
tong	29/5/2023	15:40:12	Thailand	Bangkok
tong	29/5/2023	21:01:29	USA	Chicago
tong	30/5/2023	09:47:32	Thailand	Bangkok
tong	30/5/2023	15:47:54	Thailand	Bangkok
tong	30/5/2023	21:14:08	USA	Chicago
tong	31/5/2023	09:25:29	Thailand	Bangkok
tong	31/5/2023	14:02:45	Thailand	Bangkok
tong	31/5/2023	20:24:16	USA	Chicago

-	🔻	, ,	▼,
	encoding	i 👗 :	encoding
login_time	hour	country_name	country_code
8:59:23	8	Thailand	66
14:19:10	14	Thailand	66
20:04:46	20	USA	1
09:29:35	9	I Thailand	66
15:31:53	15	Thailand	66
20:39:33	20	USA	1
10:22:57	10	Thailand	66
13:56:04	13	Thailand	66
20:13:11	20 8	USA Thailand	66
14:23:50	14	Thailand	66
19:43:13	19	USA	1
10:02:00	10	Thailand	66
14:33:07	14	Thailand	66
19:14:47		USA	1
10:33:43	10	Thailand	66
15:57:44	15	Thailand	66
21:34:16	21	USA	1
09:40:30	9	Thailand	66
13:46:40	13	Thailand	66
21:06:50	21	USA	1
10:16:01	10	Thailand	66
13:46:46	13	Thailand	66
20:06:08	20	USA	1
σ		i l	!
g ¦		; i	
>	•	• • !	i
		! ;	
		i !	i
13:05:50	13	Thailand	66
21:39:03		USA	1
09:57:07	9	Thailand	66
15:26:58	15	Thailand	66
20:33:49	20	USA	1
09:39:22	9	Thailand	66
15:40:12	15	Thailand	66
21:01:29	21	USA	1
09:47:32	9	Thailand	66
15:47:54	15	! Thailand	66
21:14:08	21	USA	1
09:25:29	9	Thailand	66
14:02:49	14	Thailand	66
20:24:16	20	USA	1

Datetime Properties

Series.dt.date	Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without timezone information).
Series.dt.time	Returns numpy array of datetime.time.
Series.dt.year	The year of the datetime
Series.dt.month	The month as January=1, December=12
Series.dt.day	The days of the datetime
Series.dt.hour	The hours of the datetime
Series.dt.minute	The minutes of the datetime
Series.dt.second	The seconds of the datetime
Series.dt.microsecond	The microseconds of the datetime
Series.dt.nanosecond	The nanoseconds of the datetime
Series.dt.week	The week ordinal of the year
Series.dt.weekofyear	The week ordinal of the year
Series.dt.dayofweek	The day of the week with Monday=0, Sunday=6
Series.dt.weekday	The day of the week with Monday=0, Sunday=6
Series.dt.dayofyear	The ordinal day of the year
Series.dt.quarter	The quarter of the date
Series.dt.is_month_start	Logical indicating if first day of month (defined by frequency)
Series.dt.is_month_end	Indicator for whether the date is the last day of the month.
Series.dt.is_quarter_start	Indicator for whether the date is the first day of a quarter.
Series.dt.is_quarter_end	Indicator for whether the date is the last day of a quarter.
Series.dt.is_year_start	Indicate whether the date is the first day of a year.
Series.dt.is_year_end	Indicate whether the date is the last day of the year.
Series.dt.is_leap_year	Boolean indicator if the date belongs to a leap year.
Series.dt.daysinmonth	The number of days in the month
Series.dt.days_in_month	The number of days in the month

Use Cases: UEBA

Data Labeling (for Supervised Learning Algorithm)

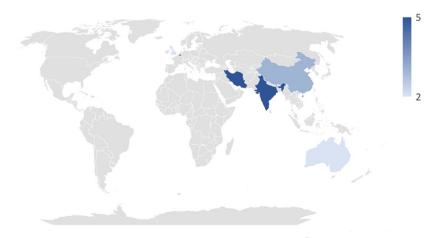
Normal Banavior		
hour	country_code	label (1=nomal, 0=anomaly)
8	66	1
14	66	1
20	1,	1
9	66	1
15	66	1
20	1	1
10	66	1
13	66	1
20	1	1
8	66	1
14	66	1
19	1	1
10	66	1
14	66	1
19	1	1
10	66	1
15	66	1
21	1	1
9	66	1
13	66	1
21	1	1
10	66	1
13	66	1
20	1	1

Abnomal Behavi	or r	
hour	country_code	label(1=nomal, 0=anomaly)
1	44	0
2	32	0
5	86	0
6	32 <mark>'</mark>	0
23	44	0
23	86	0
1	91	0
3	32	0
4	44	0
5	91	0
22	44	0
23	91	0
0	98	0
1	44	0
2	86	0
5	91	0
6	91	0
23	61	0
23	91	0
1	32	0
3	91	0
4	61 <mark>.</mark>	0
5	44	0
22	98	0

Normal Hour vs. Anomaly Hour

label (1=nomal, 0=anomaly)	0	1	2	3	4	5	6	8	9	10	13	14	15	19	20	21	22	23	Grand Total
0	1	4	2	2	2	4	2										2	5	24
1								7	14	10	6	13	9	10	10	11			93
Grand Total	1	4	2	2	2	4	2	7	14	10	9	13	9	10	10	11	2	5	117

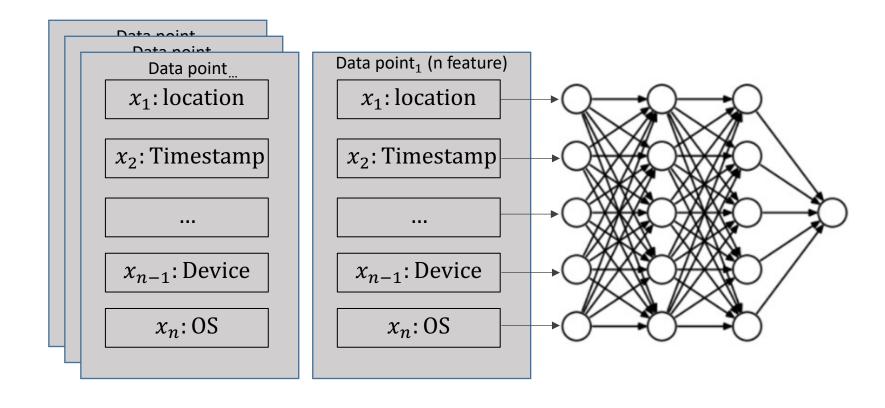
Anomaly Country



Normal Bahavior

Use Cases: UEBA

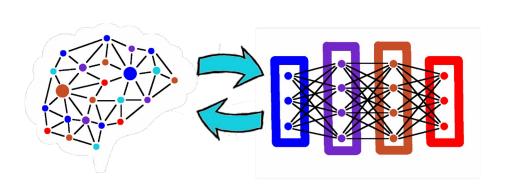
Use data to train Neural Network

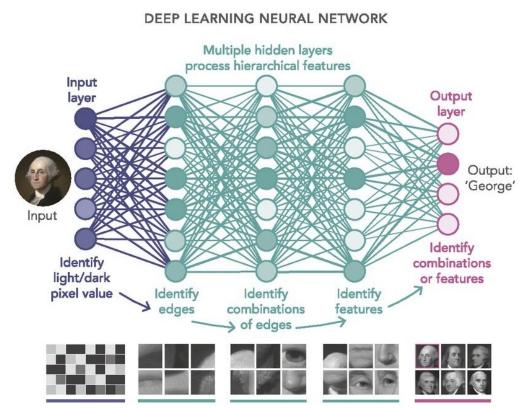


Use Cases: UEBA with Neural Network

Instead of relying on those rule to handles case by case, we can use machine learning to find those rule for us.

In this specific we can use Neural Network!





Use Cases: UEBA with Neural Network

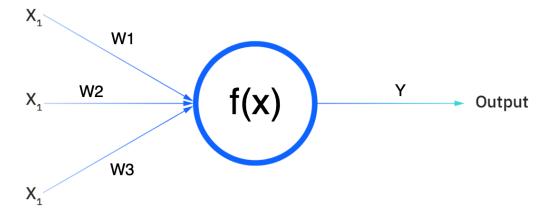
Neural Network. How is it compared to the working of brain.

You should go surfing (Yes: 1, No: 0). Let's assume that there are three factors influencing your decision-making:

- 1. Are the waves good? (Yes: 1, No: 0)
- 2. Is the line-up empty? (Yes: 1, No: 0)
- 3. Has there been a recent shark attack? (Yes: 0, No: 1)

Then, let's assume the following, giving us the following inputs:

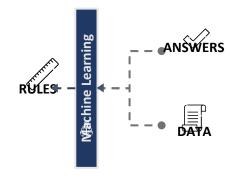
- X1 = 1, since the waves are pumping
- X2 = 0, since the crowds are out
- X3 = 1, since there hasn't been a recent shark attack
- W1 = 5, since large swells don't come around often
- W2 = 2, since you're used to the crowds
- W3 = 4, since you have a fear of sharks

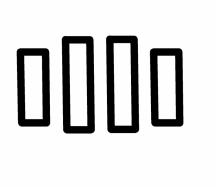


$$\sum$$
wixi + bias = w1x1 + w2x2 + w3x3 + bias
output = f(x) = 1 if \sum w1x1 + b>= 0; 0 if \sum w1x1 + b < 0
Y = (1*5) + (0*2) + (1*4) - 3 = 6

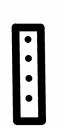
Use Cases: UEBA with Neural Network

Neural Network. How dose it work?

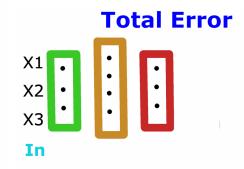




R.Brilenkov

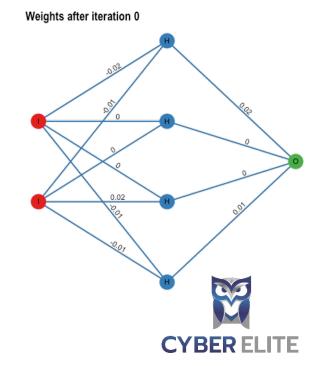


FeedForward

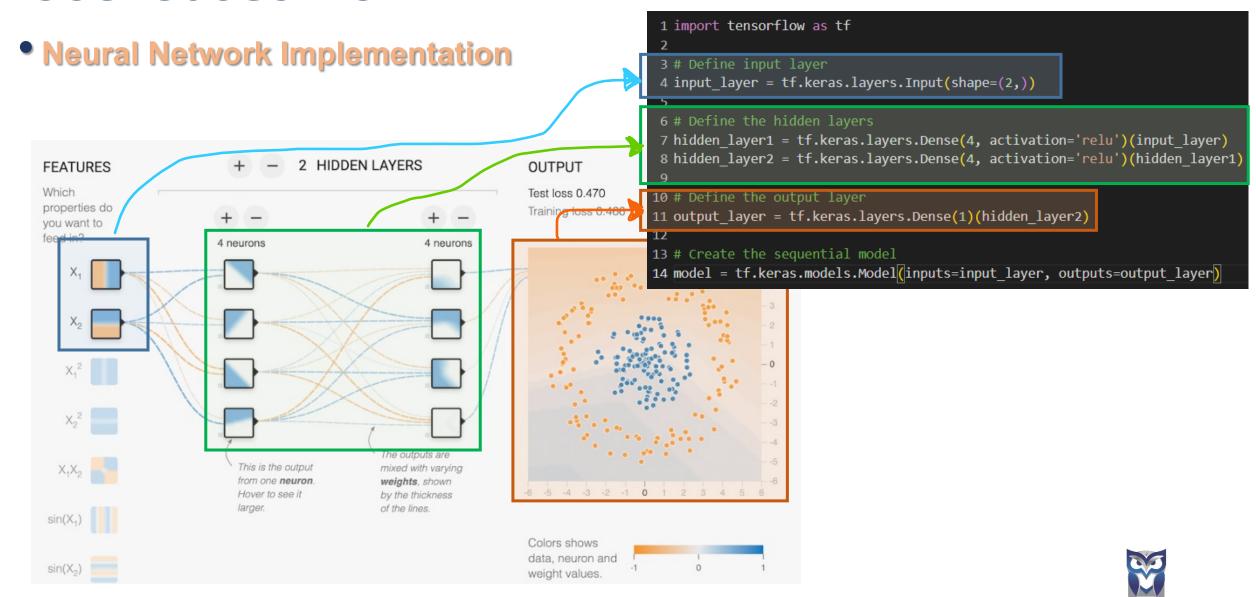


R.Brilenkov

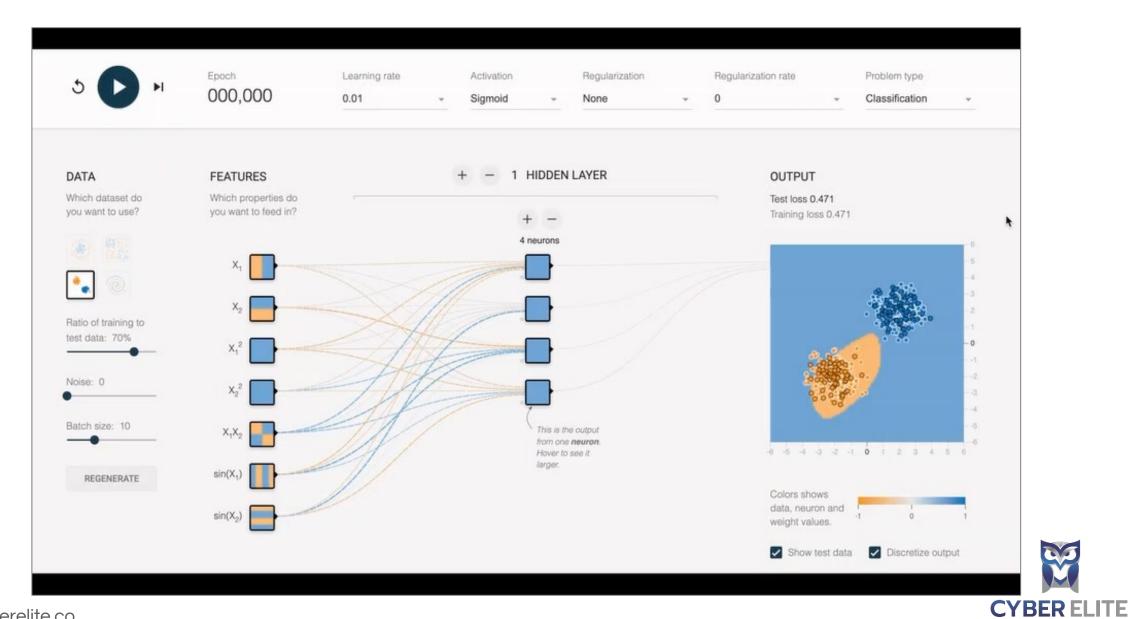
R.Brilenkov



Use Cases: UEBA



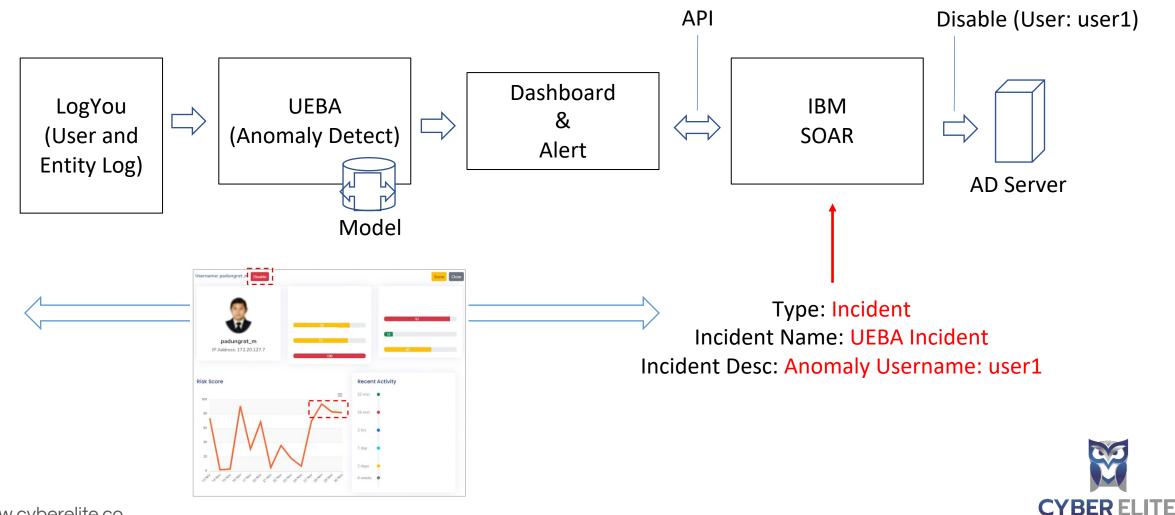
Neural Network. How dose it work?



UEBA, Other use cases (Example)

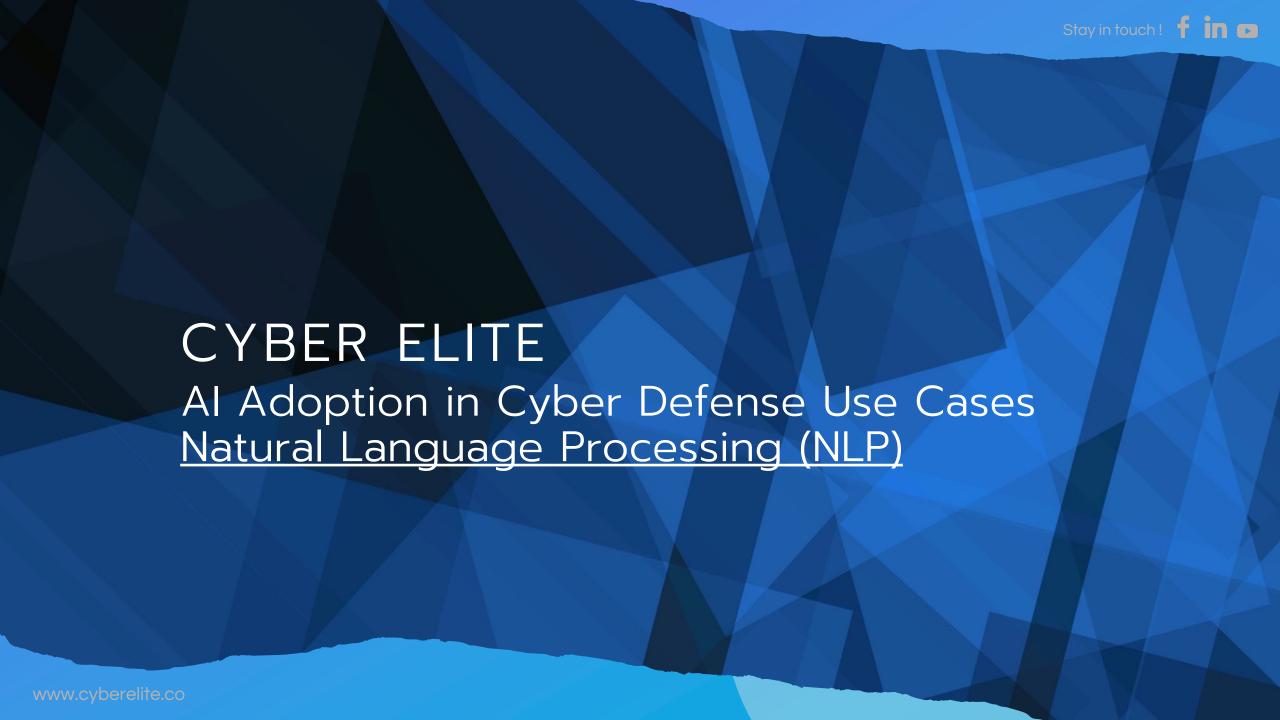
- Session Duration Analysis -> Ex: Web Application Session Duration, Database Session Duration
- Data Transfer Analysis -> Data Exfiltration
- Data Access Activity Analysis -> Data Protection(File, Database, Application)
- Fraud Detection -> Transaction Behavior Analysis

Use Cases: UEBA + IBM SOAR



Al Adoption in Cyber Defense (Conclusion)

Key Issues	Use Cases	ML Algorithms	Proactive/ Reactive
Threat detection (False Positive, False Negative, MTTD)	UEBA	Anomaly Detect (Isolation Forest (Unsupervised), Neural Network (Supervised))	Proactive/ Reactive
Threat response time (MTTR)			
New threat identification (Zero-day Attack)			
Staffing capacity and expertise			
Large volume of cyber alerts			
How to manage?			



Al Use cases: Natural Language Processing

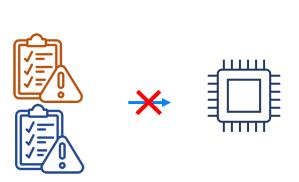
- Issues Recurring Detection
- Text Clustering

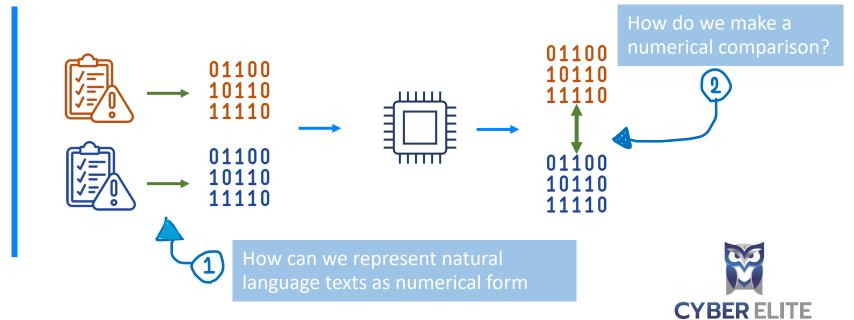


Al Use cases: <u>Natural Language Processing</u>

• Issues Recurring Detection

Intuitive way to approach is to reshape the ways we think about/ ask the question





Al Use cases: <u>Natural Language Processing</u>

• Issues Recurring Detection

Classical non-contextual algorithms

Jaccard Similarity. The simplest way to compare two texts.

$$Jaccard\ Similarity = \frac{Number\ of\ common\ unique\ words}{Total\ Number\ of\ unique\ words} = \frac{AND\ operation\ then\ bit\ count}{OR\ operation\ then\ bit\ count} = \frac{3}{5} = 0.6$$

Example.

			Numerical representation				
No.	Sentence	Unique words	เรา	ชอบ	กิน	กาแฟ	ชา
1	เราชอบกินกาแฟ	[เรา,ชอบ,กิน,กาแฟ]	1	1	1	1	0
2	เราชอบกินชา	[เรา,ชอบ,กิน,ชา]	1	1	1	0	1

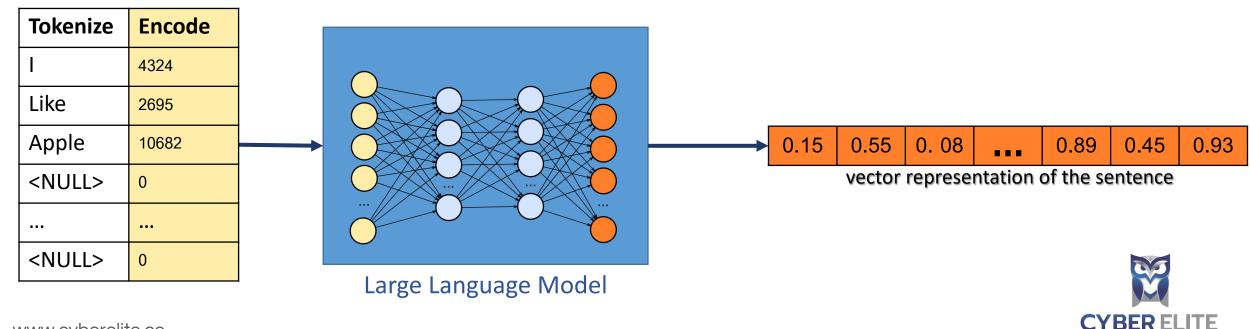
Al Use cases: <u>Natural Language Processing</u>

• Issues Recurring Detection

Modern contextual algorithms

Utilizing large language model (LLM) that is pre-trained on massive amount of text(over 1 billion sentence).

It capable of encode sentences into vector representations that capture the meaning of the sentence

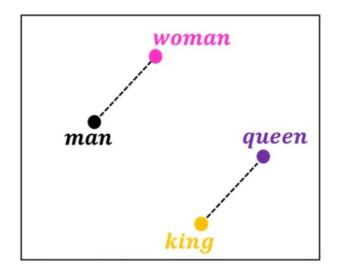


Al Use cases: Natural Language Processing

• Issues Recurring Detection

Modern contextual algorithms





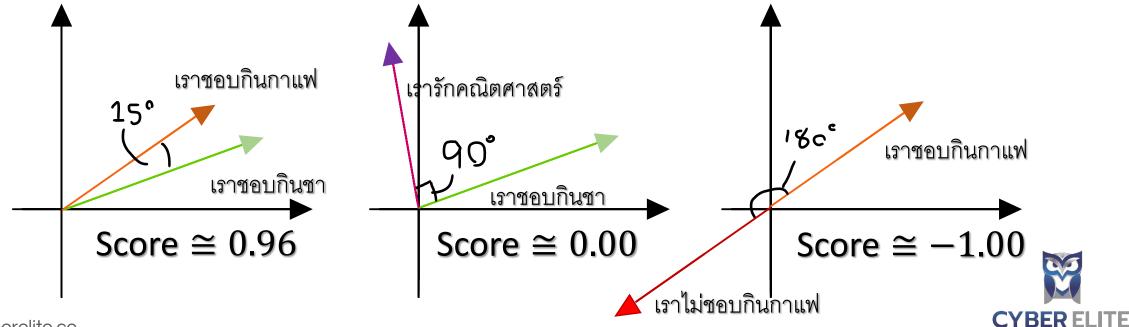
Visualization of word embeddings in 2D

Al Use cases: Natural Language Processing

Issues Recurring Detection

Modern contextual algorithms

Cosine similarity example with 2d vector

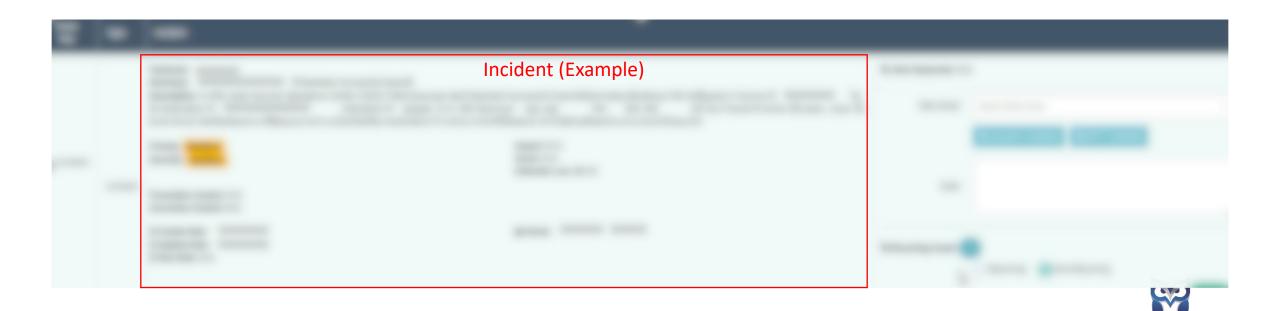


CYBER ELITE

Al Use cases: Natural Language Processing

• Issues Recurring Detection

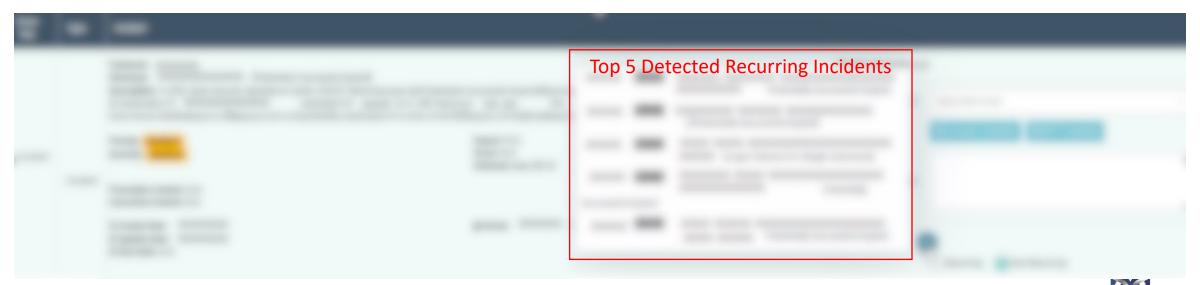
Showcase



Al Use cases: Natural Language Processing

• Issues Recurring Detection

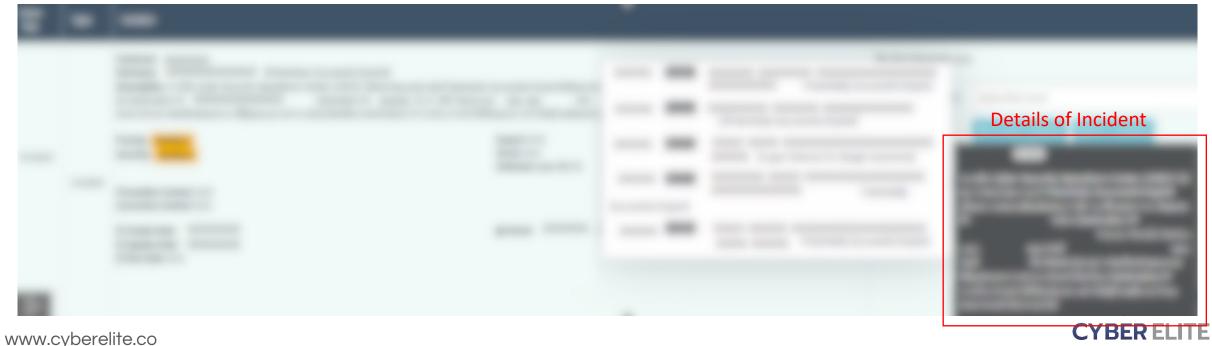
Showcase

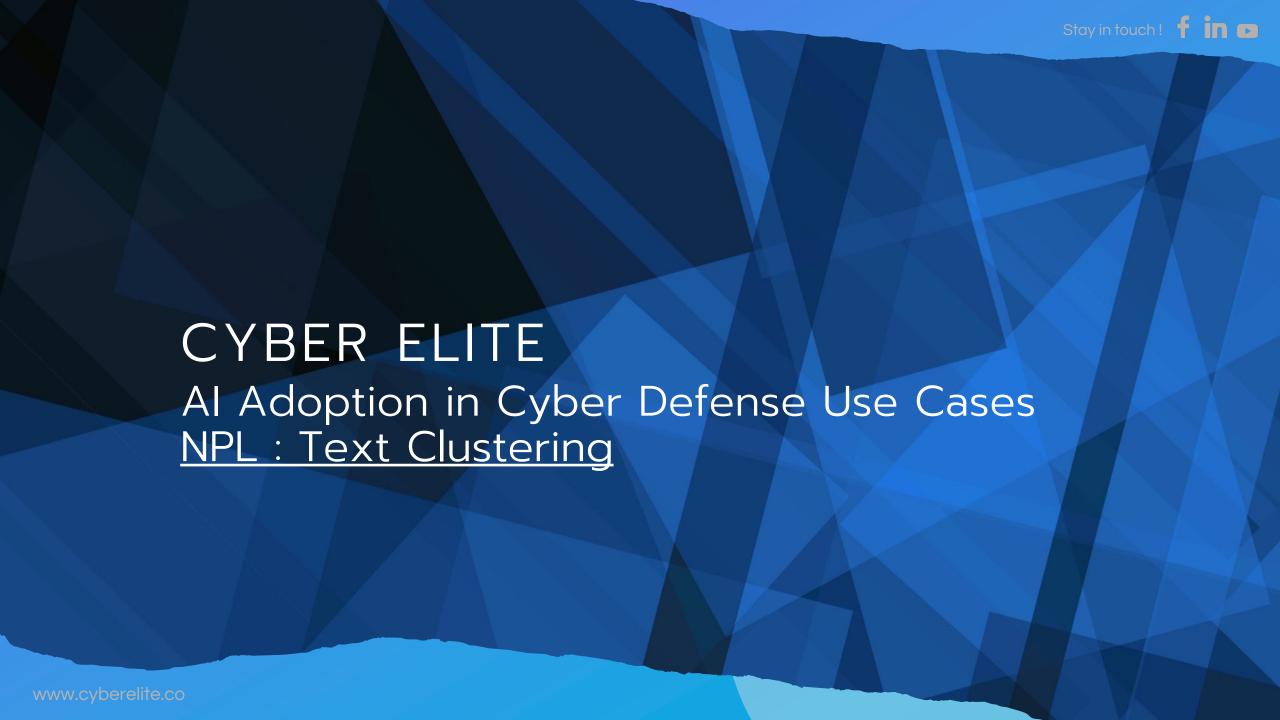


Al Use cases: Natural Language Processing

• Issues Recurring Detection

Showcase



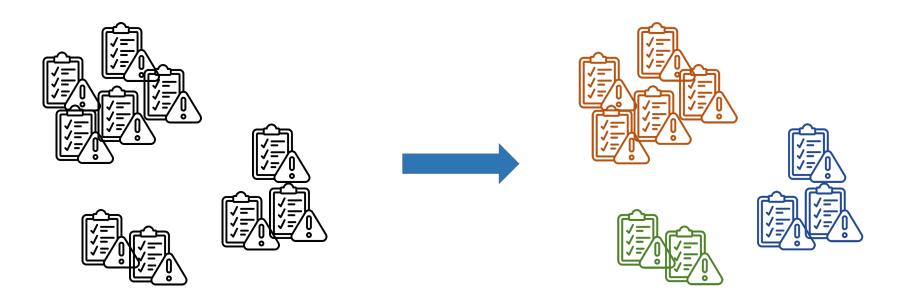


Al Use cases: Natural Language Processing

Text Clustering

What is Text Clustering?

Text clustering is a technique that groups similar documents together based on their content.

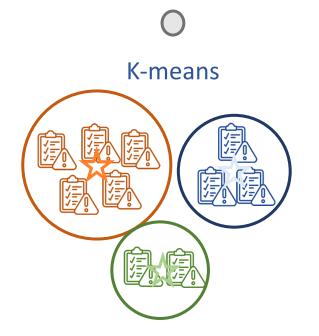


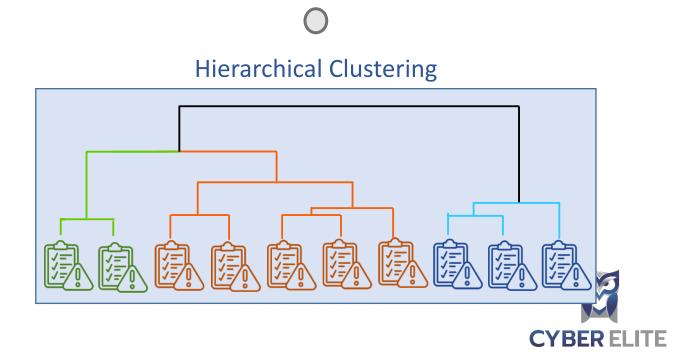
Al Use cases: Natural Language Processing

Text Clustering

How to utilizing Text Clustering technique?

Clustering algorithms





Al Use cases: <u>Natural Language Processing</u>

Text Clustering

K-means algorithm

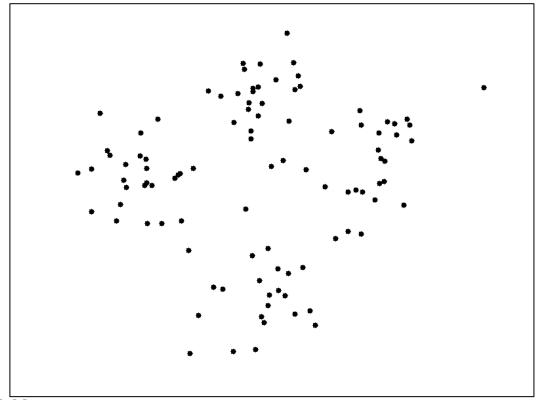
- 1. Select the number of clusters, k, and initialize the cluster centers randomly.
- 2. Repeat the following steps until convergence
 - Assign each data point to the nearest cluster center
 - Recalculate the cluster centers as the mean of the assigned data points
 - Check for convergence by comparing the new cluster centers with the previous ones.

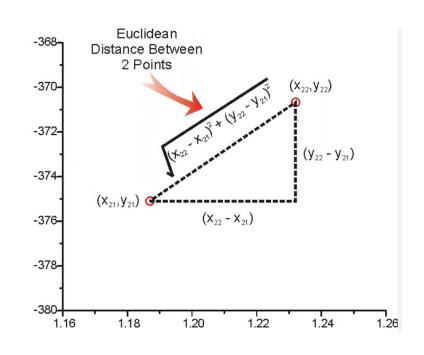
CYBER ELITE

Al Use cases: Natural Language Processing

Text Clustering

K-means algorithm, on sample data

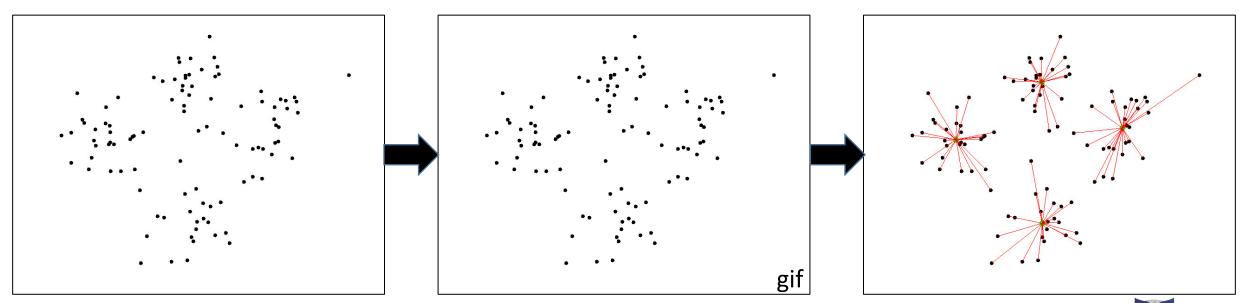




Al Use cases: Natural Language Processing

Text Clustering

K-means algorithm

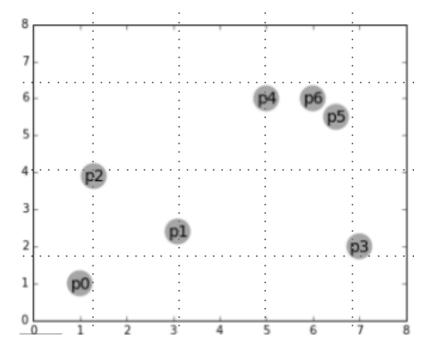


Al Use cases: Natural Language Processing

Text Clustering

How to utilizing Text Clustering technique?

Clustering algorithms: Hierarchical Clustering

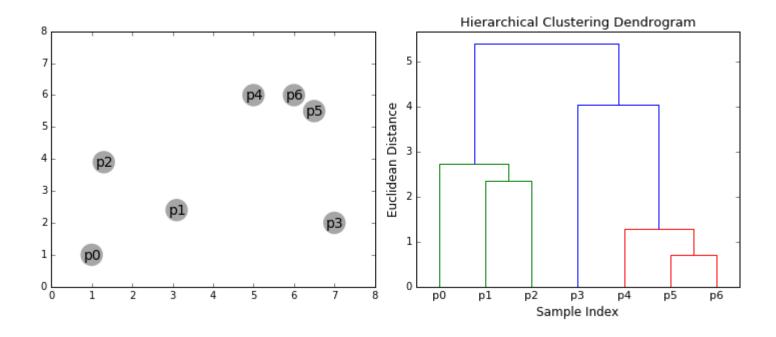


Al Use cases: Natural Language Processing

Text Clustering

How to utilizing Text Clustering technique?

Clustering algorithms: Hierarchical Clustering



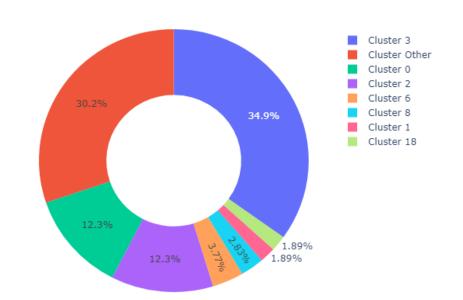
Al Use cases: Natural Language Processing

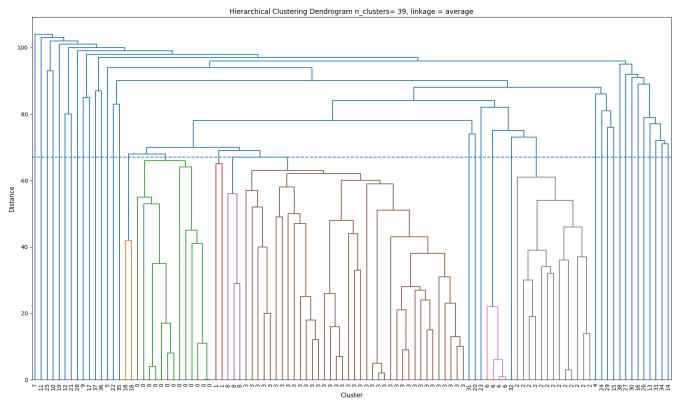
Text Clustering

Showcase: Hierarchical Clustering

On our issues/incidents data (≅ 100 Samples

Donut Chart





Al Use cases: Natural Language Processing

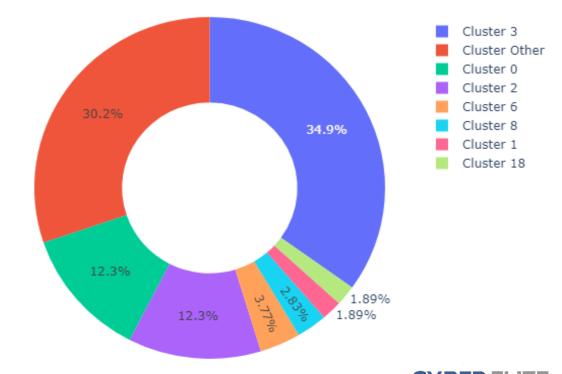
Text Clustering

Showcase: Hierarchical Clustering

On our issues/incidents data (≅ 100 Samples)

Cluster Details (from manual review)	
Malicious code/ software/ activity	
Unauthorized activities	13
Failure or disruption of communication links	13
Network Reconnaissance	4
Denial of service	3
Network outage	2
Brute force	2
Other	32

Donut Chart

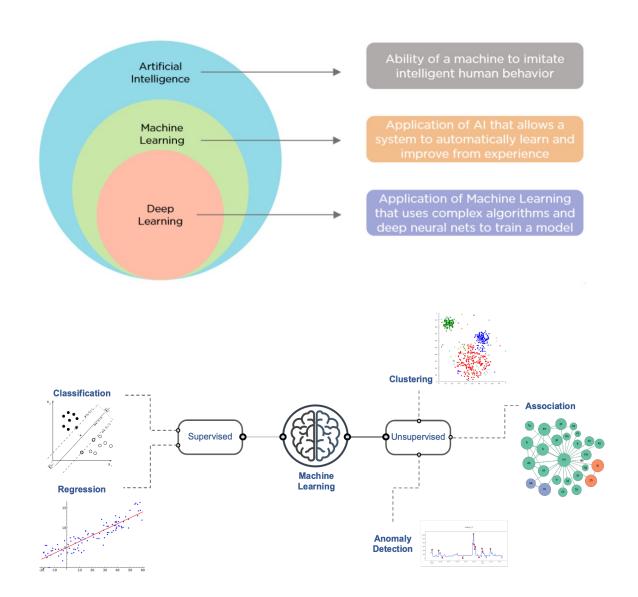


Al Adoption in Cyber Defense (Conclusion)

Key Issues	Use Cases ML Algorithms		Proactive/ Reactive
Threat detection (False Positive, False Negative, MTTD)	UEBA	Anomaly Detect (Isolation Forest (Unsupervised), Neural Network (Supervised))	Proactive/ Reactive
Threat response time (MTTR)			
New threat identification (Zero-day Attack)			
Staffing capacity and expertise			
Large volume of cyber alerts			
How to manage?	Threat Category, Prioritization	Text Similarity, Text Clustering	Proactive

Vv vv vv.cy Derenie.co

Al Adoption in Cyber Defense Key Takeaways



Key factors to consider when implementing AI solutions

- 1. Domain Expert (cybersecurity)
- 2. Data Quality
- 3. Model Selection
- 4. Hardware
- 5. Data Understanding (especially in sensitive fields like healthcare or finance)
- 6. Security and Privacy
- 7. Scalability
- 8. Ethical Implications (such as bias and fairness)
- 9. Integration
- 10. Maintenance (Al require regular maintenance and updates)
- 11. Monitoring
- 12. Bug in AI (vulnerable to attack)

Al Adoption in Cyber Defense (Conclusion)

Key Issues	Use Cases	Use Cases ML Algorithms		
Threat detection (False Positive, False Negative, MTTD)	UEBA	Anomaly Detect (Isolation Forest (Unsupervised), Neural Network (Supervised))	Proactive/ Reactive	
Threat response time (MTTR)	Doot Cours Analysis	Time Series Anomaly Detect, Pattern Recognition, Supervised Attack Pattern (Neural Network)	Proactive/ Reactive	
New threat identification (Zero-day Attack)	Root Cause Analysis			
Staffing capacity and expertise	Al Adoption	Unsupervised and Supervised Algorithms	Reactive	
Large volume of cyber alerts	7.1.7.taopaion			
How to manage?	Threat Category, Prioritization	Text Similarity, Text Clustering	Proactive	

